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Abstract. A mean-field model is proposed as a test cme for hicritical series analysis methods. 
Derivation of the SOth-order series for the magnetization is reported. As the first application 
this series is analysed by the uaditional slicewise Pad6 appro?%” method popular in earlier 
S N d i e S  of tlicriticality. 

1. Introduction 

Development of algorithms for the numerical investigation of tricritical behaviour in a two- 
variable phase diagram has been an elusive goal for many years in  the^ context of both 
magnetism and polymer studies. Two such systems that have been the focus of special 
interest are random field models for which the tricritical point is expected in the two- 
parameter space of temperature and randomness strength [l], and the &point transition of 
linear polymers [2]  for^ which the second variable is the ‘stickiness’ fugacity leading to 
collapse. For these and other systems with tricritical points, all the standard largescale 
numerical methods have been utilized Monte Carlo [3-51 and transfer matrix techniques 
[5,61 (the latter for ZD models), and series analysis [7]. 

There are many complicating factors for such studies. The models involved are rarely 
simple and must be analysed at multiple points in the two-parameter space. A ‘test problem’ 
with an exact solution and a series expansion (such as the 2D king model which is widely 
used in calibrating new techniques for second-order transitions) has been missing until now 
for two-variable problems with tricritical points. 

Some of the technical problems are specific to the numerical technique. In the random 
field and 8-point transition models reaching true equilibrium in Monte Carlo simulations, for 
instance, is complicated by slowdown effects in the low-temperature or dense (collapsed) 
regions of the phase diagram. We shall not address simulations further in this paper but 
note that there is considerable controversy over hicritical behaviour between different recent 
studies of the ZD collapse transition [4]: 8 versus 8‘ points, etc. 

Series expansions do not suffer from equilibration problems, and in many cases lattice 
models are amenable to the generation of series for all points in the two-variable phase 
diagram. In particular, two-variable series have been developed for both Ling random field 
(15th-order in general dimension) [l] and several polymer problems [2]. However, for 
series the main complication is that the very nature of the tricritical behaviour means that 
techniques for spdying both first- and second-order transitions must be applied. While 
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excellent techniques for identifying first-order bansitions via simulation have recently 
been developed [8], methods to identify first-order transitions from series expansions are 
unreliable [9] unless both low- and high-temperature series exist. In one notable case 
(the FCC-lattice Blume-Capel model) where such expansions on both sides of the transition 
were developed [lo] a satisfactory characterization of tricriticality was made from series. 

Despite the absence of a systematic, well tested approach to studying tricriticality when 
series from only one temperature direction are available, some attempts to do so have been 
made. The variety of the makeup methods used frequently resulted in differences in answers 
to the basic question concerning the existence of a tricritical point, not to speak of exponent 
and other parameter estimates which could be attributed to the diversity of methods rather 
then to the quality of the series expansions available. 

This work reports two developments towards systemizing tricritical series analysis. 
Firstly, we derive a test series based on a mean-field model with a tricritical behaviour 
which is well understood and has most of the features of 'real' tricritical points of 2D and 
3D systems. Secondly, we apply the standard 'slicewise' Pad6 method to this new series. 
We identify those features of the Pad6 approximant approach which can be regarded as 
signatures of a hicritical point in the phase diagram and which were noted in some early 
studies of tricriticality by series [7]. 

We conclude, however, that this most straightforward Pad6 method is not suitable as an 
accurate and systematic general analysis technique, and it can be only used for exploratory 
studies or in conjunction with other information. Application of the slicewise Pad6 method 
to certain random-field model series will be reported in a forthcoming publication. However, 
the door is still wide open for developing a systematic series-analysis method, possibly based 
on elaborations of the two-variable differential approximant techniques used successfully 
for bicritical points [ill. 

One interesting aspect of our test series derivation, reported in section 2, and its Pad6 
analysis in section 4, is that both rely heavily on novel large-scale computational abilities. 
Series derivation required a large Mathemarim run, whereas Pad€ analysis, employing 
simultaneously many Pad&-pole calculations and extensive graphics representations of the 
data, revealed new features not accessible to earlier studies from the seventies 171. Thus, 
future tricritical series analysis are likely to be large-scale computational projects. Section 3 
summarizes the tricritical phase diagram of the mean-field model used in test-series studies. 
Finally, section 5 is devoted to some concluding remark and to acknowledgments. 

2. The mean-Eeld model 

In this section we report derivation of a low-temperature two-variable series for a tricritical 
point in an infinite-range model with mean-field critical behaviour. There are two kinds of 
solvable king-type infinite-range models. In the first and more familiar type the spins 
are f l ,  but their interaction energy, which is the function of the total magnetization, 
is essentially arbitrary. Usually it is selected (or Taylor-expanded) as a polynomial in 
the total magnetization so that the resulting constlained free energy, as a function of the 
magnetization, m, resembles the Landau expansion. 

The second type of a mean-field model [12] is defined by having a simple quadratic 
energy but a complicated entropy-like contribution due to assigning essentially an arbitrary 
measure in the evaluation of the partition function of a system of scalar spins which vary 
in (-w, +w). 

Both types of infinite-range models suffer from the difficulty that the low-temperature, 
T, behaviour is different from the short-range lattice models. Indeed, for short-range models 
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the low-T series expansions are in terms of the Boltzmann factors of excitations above a 
reference ground state, of the form exp(-AE/kT), where AE = 0(1) is the energy cost 
due to a local structure (overturned spins, broken bonds, etc). However, this ‘locality’ 
of the excitation smcture is lost for infiniterange models. The i l -spin models have 
entropic contribution to the constrained (fixed-m) free energy with singularities of the type 
“(1 - m)ln(l - m) near magnetization m = 1 (and similarly near m = -1). Thus setting 
up a low-T expansion presents a mathematical challenge. 

The models of [12] are less troublesome in this respect. One can get a well controlled 
series in powers of T itself. This ‘soft’ T-dependence is an artifact of the infinite-range 
model, and there are some other artificial features near T = 0, but the series is well 
defined and can be derived in closed form to any fixed order given sufficiently powerful 
computational facilities. Thus, we choose to work with the model of [12] here. 

The energy of the interacting scalar spins, uj, is taken as 

where N is the number of spins, and .I t 0. The partition function is defined as 

N 
exp( -E /kT)ndp(q )  

i = l  

where the spins are weighed with measure d p  (U) .  The order parameter is obtained from 

N 
m = Z-’/ .../ u , e x p ( - E / k T ) n d ~ ~ ( u ; )  

;-1 
(2.3 j 

The Gaussian-integral method [I21 can be used to show that in the limit N + 00 the 
free energy, f ,  in Z = exp(-Nf), can be obtained as 

(2.4) 

where 

If the minimum in (2.4) is at some x = x,, then one can further show that 

where the last equality follows from the fact that the global minimum is obtained at one (or 
more) roots of 

dQ kTx 
dx J ’  
_ = _  

Thus, we note that m = kTx, f J, i.e. m o( T for low temperatures. This is one of those 
artificial infiniterange model features. It turns out to be convenient to work with x, directly 
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rather than with m, as the order-parameter-like quantity for series analysis. Of course, the 
actual critical-tricritical-first-order behaviour is at T z 0 so the difference only affects the 
form of analytic corrections to scaling. 

In order to have a solvable model with tricritical behaviour, we take Q ( x )  as an even, 
six-degree polynomial in x .  There is still freedom in selecting the coefficients, etc. We 
choose to work with dimensionless parameters which, disregarding various dimensional 
factors, amounts to effectively putting 
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J = kj2 
Q ( x )  = x2 + (U - 1)X 4 6  - X  

so that our choice corresponds to 

f = min [(T - 1)x2 - (U - 1lX4 + x6] . (2.10) 

This is the simplest Landau-expanded form to yield the tricritical point, at (T, U) = (1, l), in 
the two-parameter space of the (dimensionless) temperature, T ,  and another (dimensionless) 
'coupling constant', U. 

On the low-T side there are two symmetric roots of (2.7). and there is always one root 
at x = 0. We consider the root x, > 0; the uctuul series is conveniently generated for 

x,&= &(U - 1)2 - 3(T - 1)+ U - 1. (2.11) 

By utilizing Mutkmuticu, we derived the order 50 double series in T and U for this order- 
parameter quantity. This series, i.e. the first 2601 coefficients cij, for i, j = 0,. . . ,50, 
in 

can be obtained via electronic mail, from the authors, on request. 
We also derived the functions q ( U )  in 

A x ,  = C U i ( U ) T '  
i=O 

(2.12) 

(2.13) 

for i = 0, 1,. . . ,50. These functions are available in the FORTRAN form, via electronic 
mail. 

3. The t r ier i t id  phase diagram 

For U .c 1, there is a second-order transition line at T = 1, at which the order parameter 
approaches zero according to the mean-field law x, o( m. The proportionality constant 
diverges as l/m for U + 1-. At the tricritical point, the order-parameter vanishes 
according to - (1 - T)'I4. 

For U t 1 there is a first-order transition. The l i e  T = 1 still have special significance 
as the mean-field spinodal (see further below) above which the high-temperature, zero- 
order-parameter phase exists. However, it is not seen in the low-T expansion. The actual 
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first-order transition line is determined by the condition that the minima at x, > 0 and at 
x = 0 are equal (cf equation (2.10)). A somewhat lengthy calculation yields 

for the first-order transition line at U z 1. 
Along this line the low-T-side order parameter vanishes according to o( m~ as 

U + 1+, i.e. on approach to the tricritical point. However, for fixed U z 1, the order 
parameter is finite at the first-order transition, 

from the low-T side, and it vanishes from the high-T side. 
In short-range king-type lattice models, if one attempts to analytically continue 

the thermodynamic functions ‘through‘ the first-order line, one encounters an essential 
singularity at the first-order transition. This singularity is due to droplet excitations; it 
is weak and its detection in series analysis has rarely been accomplished unambiguously 
191. Specifically, its manifestation within the traditional Pad6 method aimed at detecting 
power-law divergences is at best indirect via sequences of weak, alternating poles and 
zeros of the approximants 191; see the following sections for further discussion. While the 
incorporation of this essential singularity must be ultimately a goal for a fully systematic 
series-analysis method of tricriticality, at the present state of the art and available series 
lengths, its presence will have little effect in any series study. 

There is no essential singularity for infinterange models as there are no droplet 
excitations, only uniform ones. When the thermodynamic quantities are continued past 
the first-order emsition, one encounters a spinodal line at which the low-T order parameter 
x,,, z 0 ceases to be a local minimum of the constrained free energy. (While at the first-order 
line it ceases to be the global minimum.) This mean-field spinodal line is at 

T = 1 +$(U - 1 ) Z .  (3.3) 

The existence of a sharp spinodal-type singularity is an artifact of the infinite-range model. 
However, for short-range models traces of spinodal-type behaviour have been noted in 
availablelength series analysis 191. These are artifacts of employing approximants (within 
Pad6 or other analysis methods) which fit the data to a form suggestive of a sharp singularity; 
see [9] for further discussion. 

Near the tricritical point, one can Write the low-T-side scaling form in terms of the 
scaling variables 

t = T - l < O  and a = U - l  
f i x ,  N ( - t ) ’ / 4 ~ - ( U ( - r ) - ’ / ~ )  

where the scaling form (3.5) applies for t ,  U + 0 and the scaling function is 

F-K) = d m  

(3.4) 
(3.5) 

(3.6) 
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4. Slicewise Pad6 analysis 

The slicewise Pad6 analysis is perhaps the simplest, single-variable approach to analysing 
doubleseries expansions [71. Thus, we calculate, for fixed U, approximants to the series 
coefficients a; in 
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The coefficients ai are approximated by 

a; Y cij U' 
j=O 

(4.2) 

where in our case j,, = 50. 

the rational approximant of the form 
The order [ M I L ]  dlog-Pad6 approximant to the derivative xh = ax,/aT is defined as 

(4.3) 

where the derivative xh rather than x, was used in order to have both the numerator and 
denominaror of the left-hand side diverge at their first singularity as T is increased from 
zero. Specifically, for fixed U, we have 

X; K [ T ( U )  - (4.4) 

with T ( U )  = T, = 1, B = i at the critical line for U < 1, and T(1)  = 1, B = 2 4 at the 
tricritical value U = 1. For the infinite-range model T(U) equals the spinodal value (3.3). 
while B = 4. for fixed U z 1. Note that for U < 1 the exponent E is related to the 
order-parameter exponent usually denoted by p, via B = 1 - p. 

The coefficients PO. .... M and 41. ..., M are calculated in a standard fashion [13] to have 
the power series of the right-hand side of (4.3) reproduce the first M + L + 1 power- 
series coefficients of the left-hand side. Of special interest are the poles of the approximant 
which here depend parametrically on U and will be loosely denoted simply by T(U). It is 
anticipated that for power-law singularities (4.4) a 'stable' pole location will be found in 
the highest-order, near diagonal approximants (i.e. M 2: L and M + L + 1 close or equal to 
the order of the available series for x i / & )  such that for T near T(U) the right-hand side 
of (4.3) approximates the behaviour suggested by (4.4), 

Thus, the residue at the stable pole approximates the exponent in (4.4), -B.  
For essential singularities and other singularities associated with branch cuts, it has been 

noted [9] that Pad6 approximants sometimes yield a sequence of alternating weak poles and 
zeros (zeros of the denominator and numerator, respectively) which mimic the branch cut. 
However, the Pad6 method is well suited only for single-variable expansions of functions 
with power-law singularities. It is worth pointing out that recently exact results were derived 
for certain models of partially convex lattice vesicles [I41 which show tricritical behaviour 
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witb essential singularities at the ‘first-order line’ of their phase diagram. Double-variable 
expansions can be derived for these models [15] and possibly used as test series for methods 
to detect essential singularities, etc. However, we note that the singularities of the models of 
114,151 seem to be natural-boundary-type and differ from droplet-type essential singulatities 
anticipated at King first-order transitions. 

It is also important to point out that in the slicewise Pad6 method used here the 
approximation if two-fold the coefficients ai are calculated approximately via the truncated 
series (4.2); the Pad6 method is applied to the truncated series (4.1). We kept the order 
of the Pad6 approximation, M + L + 1, at about half the order of the truncation in (4.2), 
which is j,, = 50. Still, as examples below illustrate, the method fails for U 2 1 which is 
presumably due to the truncation (4.2). While the truncation (4.2) is the approach used in 
the early literature, it is natural to consider improvement of this approximation: we address 
this issue later in this section. 

As our first example, it is useful to consider approximants with only a single pole. For 
instance, figure 1 shows the pole location for the approximant [19/1]. We note that the 
approximant becomes ‘defective’ for U 2 1 in that the location of the pole has nothing 
to do with the actual spinodal line. Figure 2 also illustrates that the residue provides a 
poor approximation to the exponent B .  The latter, however, can be blamed on our use of 
the extremely off-diagonal approximant. This ‘hooking’ of the approximant away from the 
actual phase-fransition line has been noted in earlier studies [7]. The hooking can also be in 
the direction opposite to that of figure 1, as occurs, for instance, in the [30/1] approximant 
not shown here. 

Study of diagonal and also numerous near-diagonal approximants (only two are achlally 
illustrated here; see figures 3-5) reveals that they indeed significantly improve the exponent 

Figure 1. The symbols 0, mexging for most part as heavy full curves, show the pole T(U) of 
the [19/1] dlog-Paa approximant to the T-derivative of the mgoeIization series. The  full 
c w e s  mnespond to the fuse-order m i t i o n  (lower curve, equation (3.1)). and to the mean-field 
spinodal line (upper curve. quation (3.3)). for U > 1. The hicritical point is at T = 1, U = 1, 
while for U < 1 there is the second-order transition at T 1. 
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Figure 2. The symbols 0 show the exponent B(U) as calculated from the residue at the pole 
of the [19/11 Pad6 approximt. The horizontal thin full line corresponds to the exact value 
B = for U # 1. Thevenical sp'eat U = 1 goes up CO theexact value B(1) = 3. 

Figure 3. Shown are all the poles T(U) of the [10/10] Pad6 appmximant which fit wichin the 
figure range. 

B estimate for small U < 1. Most approximants also yield B values quite close to 2 at 
U = 1. However, the phase diagram is not well represented near and above the tricritical 
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Figure 4. Exponent estimates B(U) from the residues of all the poles of the [lO/IO] Pad6 
approximant. 

Figure 5. Shown are all the poles T(U) of the [17/17] Pad6 appnximant. 

point. In the wide crossover regime near U = 1, the approximants become defective: 
the 'physical' pole alternates among several branches of the roots of the denominator; see 
figure 3 for the [10/10] approximant. While these branches lirst roughly follow the exact 
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spinodal location above U = 1, they soon ‘hook away’. The exponent estimates also show 
a rather irregular crossover pattem near U = 1; see for instance figure 4 for [10/10]. The 
approximation fully deterioratcs soon above U = 1. Furthermore, it seems that the quality 
of the approximation is affected little by increasing the approximant order as illustrated by 
the case [17/17] in figure 5. 

Our conclusion is that the slicewise Pad6 method as implemented [7] can at best provide 
a qualitative indication of the presence of a tricritical point. A wide region of irregular, 
‘defective’ approximant behaviour develops on approach to tricriticality. The hooking noted 
in earlier studies [7] can be attributed to changeovers among the various pole branches. Thus 
plotting all the poles and all the residues allows a rough location of the tricritical point and 
estimation of the exponent. But otherwise the slicewise Pad6 method should not be regarded 
as a systematic technique for analysing tricritical behaviour. 

We now turn to the approximation involved in the truncation (4.2). Some series actually 
have the functions ui(U) as polynomials in U (or other appropriate expansion parameter). 
However, generally the double-series are available in the form truncated in both variables. 
It is natural to assume that the quality of the overall can be improved by using resummation 
methods for the single-variable series (4.2). To our knowledge, no systematic procedures 
were developed in the literature; one could contemplate Pad6 or other resummation methods. 
However, in this work we l i t e d  ourselves to the following: we repeated the preceding 
analysis with the exacf functions ai(U), derivation of which was described in section 2. 

Figure 6 illustrates the behaviour of the poles for the case of the [10/10] Pad6 
approximant. It should be compared with figure 3. We note that without the truncation 
(4.2), the approximation for U 2 1 improves. Specifically, the leading pole now clearly 
follows the spinodal l i e  for U > 1. However, the main problems remain: the crossover 
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Figure 6. Shown are the poles T ( U )  of the [10/101 dlog-Pad€ appmximant calculated with the 
exact coefficient values ai (U) (cf figure 3). For U > 1, the thin full line corresponds to the 
flm-order baosition ( e q d o n  (3.1)). while the leading appmxinwnt (the smallest T(U) values) 
follows the mean-field spinodal (equation (3.3)). with the difference smaller than the size of the 
symbols. 
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Figure 7. The exponent B ( U )  as calculated from the midue at the pole of the [10/10] Pad& 
approximant with the exact ai(U) values; d figure 4. The hodzontal thin full line corresponds 
to the exact vdne B = f for U # 1. The vertical spike at U = 1 goes up to the exact “due 
B(1) = 9 .  

region near ,U = 1 is marked by the ‘defective’ behaviour where poles approach each other 
and switch role. Furthermore, the leading pole for U 1 is accompanied by a sequence of 
weak poles which mimic branch-cut effect. Figure 7 shows the residues at the poles of the 
[10/10] Pad6 approximant. It should be compared with figure 4. The exponent estimation is 
only accurate for U < 1. In the wide crossover region near U = 1 the defective behaviour 
spoils the accuracy of the approximation, while for U > 1 the quality of the approximation 
is low presumably due to the accompanying weak poles. A similar behaviour was observed 
for other near-diagonal Pad6 approximants calculated with the exact ai(U) values, and as 
before there was no visible improvement when the order, [MIL] ,  of the approximant was 
increased. 

5. Concluding remarks 

As discussed in the previous section, the simplest Pad6 approach fails in several aspects 
near hicritical points. Let us now consider a ‘wish list’ for a more systematic series analysis 
method. Firstly, we would expect to produce a smoothed-out but regular approximation to 
the exponent, i.e. the spiked line in figure 2, and to the phase diagram, i.e. to the phase- 
transition lines shown in figure 1. The approximants should be sharpening up with the 
increased order of approximation. Secondly, we would also like to estimate the scaliig 
form at the hicritical point, cf (3.5), as in the differential-approximant analysis of hicritical 
points [ l l] .  

An added complication at tricritical points is the presence of singularities at the first- 
order transition Line, as well as possible pseudo-singular spinodal behaviour. Specifically, 
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for king-type models there are weak essential singularities. However, for other models with 
soft-mode excitations. power-law spin-wave-type singularities are present at the first-order 
transition. For yet another class of models, thc droplet picture may not be fully understood, 
such as for certain systems with randomness, or the first-order-regime singularities may not 
have been carefully discussed in the literature, such as for the polymer collapse. 

We note that the deterioration of the approximant quality in the slicewise Pad6 method 
has always occurred at larger U values. Improvement accomplished by avoiding the 
approximate truncation (4.2) was not sufficient for really accurate results. Other approaches 
involve, for instance, ‘slicing’ along curvilinear paths that originate at the origin of the 
( T ,  U) plane, etc. These possibilities will be explored in future publications. 

All the above remarks indicate that series analysis of hicritical behaviour promises to 
become an interesting and active field with the availability of new, long series and modern 
computational facilities. It is hoped that the approach presented here will yield useful test 
series for these studies. 

J Adler and V Privman 
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